**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by J. Delsarte

**Publisher**: Tata Institute of Fundamental Research 1961**ISBN/ASIN**: B0007J92RQ**Number of pages**: 151

**Description**:

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem on the spherical mean for harmonic functions.

Download or read it online for free here:

**Download link**

(680KB, PDF)

## Similar books

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**10801**views)

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**16754**views)

**Harmonic Analysis**

by

**S.R.S. Varadhan**-

**New York University**

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. etc...

(

**10018**views)

**Harmonic Analysis**

by

**Russell Brown**-

**University of Kentucky**

These notes are intended for a course in harmonic analysis on Rn for graduate students. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.

(

**9950**views)