The Elements of Non-Euclidean Geometry
by D.M.Y. Sommerville
Publisher: G. Bell & Sons Ltd. 1919
ISBN/ASIN: 0486442225
Number of pages: 300
Description:
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations. It features the relation between parataxy and parallelism, the absolute measure, the pseudosphere, and Gauss' proof of the defect-area theorem.
Download or read it online for free here:
Download link
(multiple formats)
Download mirrors:
Mirror 1
Similar books

by J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry - MSRI
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.
(12331 views)

by Horatio Scott Carslaw - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(10283 views)

by David C. Royster - UNC Charlotte
In this course the students are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry.
(12708 views)

by Mike Hitchman
This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.
(7648 views)