**The Elements of Non-Euclidean Geometry**

by D.M.Y. Sommerville

**Publisher**: G. Bell & Sons Ltd. 1919**ISBN/ASIN**: 0486442225**Number of pages**: 300

**Description**:

Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations. It features the relation between parataxy and parallelism, the absolute measure, the pseudosphere, and Gauss' proof of the defect-area theorem.

Download or read it online for free here:

**Download link**

(multiple formats)

Download mirrors:**Mirror 1**

## Similar books

**Geometry with an Introduction to Cosmic Topology**

by

**Mike Hitchman**

This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.

(

**6444**views)

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**6914**views)

**Hyperbolic Geometry**

by

**J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry**-

**MSRI**

These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.

(

**10013**views)

**The Elements Of Non-Euclidean Geometry**

by

**Julian Lowell Coolidge**-

**Oxford At The Clarendon Press**

Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.

(

**11661**views)