Logo

Lectures on Riemann Matrices

Small book cover: Lectures on Riemann Matrices

Lectures on Riemann Matrices
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: B000OK34HM
Number of pages: 101

Description:
In this course of lectures, we shall be concerned with a systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; Division algebras over Q; Positive involutions of the second kind in division algebras; Existence of R-matrices with given commutator-algebra; Modular groups associated with Riemann matrices.

Download or read it online for free here:
Download link
(600KB, PDF)

Similar books

Book cover: Lectures on Stratification of Complex Analytic SetsLectures on Stratification of Complex Analytic Sets
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).
(9813 views)
Book cover: Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential OperatorsMetrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
by - Birkhäuser
This is a book on pseudodifferential operators, with emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first part of the book is accessible to graduate students with a decent background in Analysis.
(10963 views)
Book cover: Lectures on Meromorphic FunctionsLectures on Meromorphic Functions
by - Tata Institue of Fundamental Research
We shall develop in this course Nevanlinna's theory of meromorphic functions. From the table of contents: Basic Theory; Nevanlinna's Second Fundamental Theorem; Univalent Functions (Schlicht functions, Asymptotic behaviour).
(10740 views)
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
(9033 views)