**Exact Sequences in the Algebraic Theory of Surgery**

by Andrew Ranicki

**Publisher**: Princeton University Press 1981**ISBN/ASIN**: 0691082766**ISBN-13**: 9780691082769**Number of pages**: 881

**Description**:

One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject, as it was known at the time of publication.

Download or read it online for free here:

**Download link**

(13MB, PDF)

## Similar books

**Optimization Algorithms on Matrix Manifolds**

by

**P.-A. Absil, R. Mahony, R. Sepulchre**-

**Princeton University Press**

Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.

(

**17287**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**12774**views)

**Topology and Physics: A Historical Essay**

by

**C. Nash**-

**arXiv**

In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.

(

**13592**views)

**Noncommutative Localization in Algebra and Topology**

by

**Andrew Ranicki**-

**Cambridge University Press**

Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

(

**8833**views)