Logo

Mathematical Theory of Scattering Resonances

Small book cover: Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
by

Publisher: MIT
Number of pages: 640

Description:
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Linear Elliptic Equations of Second OrderLinear Elliptic Equations of Second Order
by - Leipzig University
These lecture notes are intended as an introduction to linear second order elliptic partial differential equations. From the table of contents: Potential theory; Perron's method; Maximum principles; A discrete maximum principle.
(9272 views)
Book cover: Partial Differential Equations with MaplePartial Differential Equations with Maple
by - Tampere University of Technology
The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.
(9756 views)
Book cover: Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential EquationsLectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations
by - Tata Institute of Fundamental Research
In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.
(13036 views)
Book cover: Linear Partial Differential Equations and Fourier TheoryLinear Partial Differential Equations and Fourier Theory
by - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
(29573 views)