Logo

Lectures on Cauchy Problem by Sigeru Mizohata

Small book cover: Lectures on Cauchy Problem

Lectures on Cauchy Problem
by

Publisher: Tata Institute of Fundamental Research
Number of pages: 191

Description:
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions which are given on a hypersurface in the domain. Cauchy problems are an extension of initial value problems and are to be contrasted with boundary value problems.

Download or read it online for free here:
Download link
(940KB, PDF)

Similar books

Book cover: Pseudodifferential Operators and Nonlinear PDEPseudodifferential Operators and Nonlinear PDE
by - Birkhäuser Boston
Since the 1980s, the theory of pseudodifferential operators has yielded many significant results in nonlinear PDE. This monograph is devoted to a summary and reconsideration of some uses of this important tool in nonlinear PDE.
(10717 views)
Book cover: Linear Partial Differential Equations and Fourier TheoryLinear Partial Differential Equations and Fourier Theory
by - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
(28476 views)
Book cover: An Introduction to Partial Differential EquationsAn Introduction to Partial Differential Equations
by - arXiv.org
These lecture notes view the subject through the lens of applied mathematics. The physical context for basic equations like the heat equation, the wave equation and the Laplace equation are introduced early on, and the focus is on methods.
(4620 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - UCSB
The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.
(13573 views)