Lectures on Cauchy Problem
by Sigeru Mizohata
Publisher: Tata Institute of Fundamental Research 1965
Number of pages: 191
Description:
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions which are given on a hypersurface in the domain. Cauchy problems are an extension of initial value problems and are to be contrasted with boundary value problems.
Download or read it online for free here:
Download link
(940KB, PDF)
Similar books
Mathematical Theory of Scattering Resonances
by Semyon Dyatlov, Maciej Zworski - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
(10725 views)
by Semyon Dyatlov, Maciej Zworski - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
(10725 views)
An Introduction to Microlocal Analysis
by Richard B. Melrose, Gunther Uhlmann - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(11337 views)
by Richard B. Melrose, Gunther Uhlmann - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(11337 views)
Partial Differential Equations of Mathematical Physics
by William W. Symes - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(16175 views)
by William W. Symes - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(16175 views)
Introduction to Partial Differential Equations
by Valeriy Serov - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(14055 views)
by Valeriy Serov - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(14055 views)