**Gauge Theory for Fiber Bundles**

by Peter W. Michor

**Publisher**: Universitaet Wien 1991**ISBN/ASIN**: 8870882470**ISBN-13**: 9788870882476**Number of pages**: 106

**Description**:

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms of P which cover the identity on the base space M. It is the arena for the Yang-Mills-Higgs equations which allows a satisfactory unified description of electromagnetic and weak interactions, which was developed by Glashow, Salam, and Weinberg.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**10099**views)

**Functional Differential Geometry**

by

**Gerald Jay Sussman, Jack Wisdom**-

**MIT**

Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.

(

**11396**views)

**A Geometric Approach to Differential Forms**

by

**David Bachman**-

**arXiv**

This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.

(

**15586**views)

**Lectures on Fibre Bundles and Differential Geometry**

by

**J.L. Koszul**-

**Tata Institute of Fundamental Research**

From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).

(

**10602**views)