**Gauge Theory for Fiber Bundles**

by Peter W. Michor

**Publisher**: Universitaet Wien 1991**ISBN/ASIN**: 8870882470**ISBN-13**: 9788870882476**Number of pages**: 106

**Description**:

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms of P which cover the identity on the base space M. It is the arena for the Yang-Mills-Higgs equations which allows a satisfactory unified description of electromagnetic and weak interactions, which was developed by Glashow, Salam, and Weinberg.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Triangles, Rotation, a Theorem and the Jackpot**

by

**Dave Auckly**-

**arXiv**

This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.

(

**9109**views)

**Probability, Geometry and Integrable Systems**

by

**Mark Pinsky, Bjorn Birnir**-

**Cambridge University Press**

The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.

(

**16225**views)

**Lectures on Exterior Differential Systems**

by

**M. Kuranishi**-

**Tata Institute of Fundamental Research**

Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.

(

**12384**views)

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**17916**views)