Logo

Gauge Theory for Fiber Bundles

Small book cover: Gauge Theory for Fiber Bundles

Gauge Theory for Fiber Bundles
by

Publisher: Universitaet Wien
ISBN/ASIN: 8870882470
ISBN-13: 9788870882476
Number of pages: 106

Description:
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms of P which cover the identity on the base space M. It is the arena for the Yang-Mills-Higgs equations which allows a satisfactory unified description of electromagnetic and weak interactions, which was developed by Glashow, Salam, and Weinberg.

Download or read it online for free here:
Download link
(600KB, PDF)

Similar books

Book cover: An Introduction to Gaussian GeometryAn Introduction to Gaussian Geometry
by - Lund University
These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.
(12159 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(16543 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(11030 views)
Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(16439 views)