Basic Analysis Gently Done: Topological Vector Spaces
by Ivan F. Wilde
Publisher: King's College, London 2010
Number of pages: 129
Description:
These notes are based on lectures given at King's College London (as part of the Mathematics MSc program). The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; Separation; Vector Spaces; Topological Vector Spaces; Locally Convex Topological Vector Spaces; Banach Spaces; The Dual Space of a Normed Space; Frechet Spaces.
Download or read it online for free here:
Read online
(online reading)
Similar books
Linear Functional Analysis
by W W L Chen - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(16433 views)
by W W L Chen - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(16433 views)
Notes on Operator Algebras
by G. Jungman - Los Alamos National Laboratory
Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.
(11585 views)
by G. Jungman - Los Alamos National Laboratory
Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.
(11585 views)
Introduction to Functional Analysis
by Vladimir V. Kisil - University of Leeds
Contents: Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; etc.
(13910 views)
by Vladimir V. Kisil - University of Leeds
Contents: Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; etc.
(13910 views)
C*-algebraic Methods in Spectral Theory
by Serge Richard - Nagoya University
From the table of contents: Linear operators on a Hilbert space; C*-algebras; Crossed product C*-algebras; Schroedinger operators and essential spectrum; Twisted crossed product C*-algebras; Pseudodifferential calculus; Magnetic systems.
(10305 views)
by Serge Richard - Nagoya University
From the table of contents: Linear operators on a Hilbert space; C*-algebras; Crossed product C*-algebras; Schroedinger operators and essential spectrum; Twisted crossed product C*-algebras; Pseudodifferential calculus; Magnetic systems.
(10305 views)