**Surgical Methods in Rigidity**

by F.T. Farrell

**Publisher**: Springer 1996**ISBN/ASIN**: 3540589775**ISBN-13**: 9783540589778**Number of pages**: 108

**Description**:

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite to this result. It is intended for researchers and advanced graduate students in both differential geometry and topology.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Combinatorial Knot Theory**

by

**Louis H. Kauffman**-

**University of Illinois at Chicago**

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

(

**11113**views)

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**11694**views)

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**12940**views)

**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by

**R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov**-

**arXiv**

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.

(

**6742**views)