**Geometric Wave Equations**

by Stefan Waldmann

**Publisher**: arXiv 2012**Number of pages**: 279

**Description**:

In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.

Download or read it online for free here:

**Download link**

(3.5MB, PDF)

## Similar books

**Cusps of Gauss Mappings**

by

**Thomas Banchoff, Terence Gaffney, Clint McCrory**-

**Pitman Advanced Pub. Program**

Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.

(

**15860**views)

**Transformations of Surfaces**

by

**Luther Pfahler Eisenhart**-

**Princeton University Press**

Most of the transformations are reducible to transformations F or to transformations of the type such that a surface and a transform are focal surfaces of a W congruence. It is the purpose of this book to develop these two types of transformations.

(

**2490**views)

**Natural Operations in Differential Geometry**

by

**Ivan Kolar, Peter W. Michor, Jan Slovak**-

**Springer**

A comprehensive textbook on all basic structures from the theory of jets. It begins with an introduction to differential geometry. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces.

(

**16515**views)

**Manifolds: Current Research Areas**

by

**Paul Bracken (ed.)**-

**InTech**

Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.

(

**6479**views)