Geometric Wave Equations
by Stefan Waldmann
Publisher: arXiv 2012
Number of pages: 279
Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.
Download or read it online for free here:
Download link
(3.5MB, PDF)
Similar books

by Kentaro Yano - North Holland Publishing Co.
The topics include: Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order; Groups of transformations in generalized spaces; Global properties of the groups of motions in a compact Riemannian space...
(4276 views)

by David Bachman - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(16644 views)

by Gerald Jay Sussman, Jack Wisdom - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(12362 views)

by M. Desbrun, P. Schroeder, M. Wardetzky - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(15748 views)