Geometric Wave Equations
by Stefan Waldmann
Publisher: arXiv 2012
Number of pages: 279
Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.
Download or read it online for free here:
Download link
(3.5MB, PDF)
Similar books

by Peter W. Michor - Universitaet Wien
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...
(8796 views)

by M. Desbrun, P. Schroeder, M. Wardetzky - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(14201 views)

by Martin A. Guest - arXiv
This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.
(9905 views)

by Jonathan Holland, Bogdan Ion - arXiv
Contents: Affine connections and transformations; Symmetric spaces; Orthogonal symmetric Lie algebras; Examples; Noncompact symmetric spaces; Compact semisimple Lie groups; Hermitian symmetric spaces; Classification of real simple Lie algebras.
(8891 views)