
Geometric Wave Equations
by Stefan Waldmann
Publisher: arXiv 2012
Number of pages: 279
Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.
Download or read it online for free here:
Download link
(3.5MB, PDF)
Similar books
Introduction to Homological Geometryby Martin A. Guest - arXiv
This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.
(11492 views)
The Convenient Setting of Global Analysisby Andreas Kriegl, Peter W. Michor - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(15457 views)
Combinatorial Geometry with Application to Field Theoryby Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(16961 views)
Projective and Polar Spacesby Peter J. Cameron - Queen Mary College
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.
(13924 views)