Logo

Lectures on Birational Geometry

Small book cover: Lectures on Birational Geometry

Lectures on Birational Geometry
by

Publisher: arXiv
Number of pages: 85

Description:
Lecture notes of a course on birational geometry. Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, pl flips and extension theorems, existence of minimal models and Mori fibre spaces, global finite generation, etc.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Lectures on the topological recursion for Higgs bundles and quantum curvesLectures on the topological recursion for Higgs bundles and quantum curves
by - arXiv
The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the discovery of the relation between the topological recursion and the quantization of Hitchin spectral curves associated with Higgs bundles.
(6712 views)
Book cover: Introduction To Algebraical GeometryIntroduction To Algebraical Geometry
by - Oxford University Press
The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.
(6975 views)
Book cover: Algebraic Curves: an Introduction to Algebraic GeometryAlgebraic Curves: an Introduction to Algebraic Geometry
by - Benjamin
These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.
(16263 views)
Book cover: Introduction to Stokes StructuresIntroduction to Stokes Structures
by - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(10545 views)