Lectures on Birational Geometry

Small book cover: Lectures on Birational Geometry

Lectures on Birational Geometry

Publisher: arXiv
Number of pages: 85

Lecture notes of a course on birational geometry. Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, pl flips and extension theorems, existence of minimal models and Mori fibre spaces, global finite generation, etc.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Lectures on Logarithmic Algebraic GeometryLectures on Logarithmic Algebraic Geometry
by - University of California, Berkeley
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.
Book cover: Lectures on Expansion Techniques In Algebraic GeometryLectures on Expansion Techniques In Algebraic Geometry
by - Tata Institute Of Fundamental Research
From the table of contents: Meromorphic Curves; G-Adic Expansion and Approximate Roots; Characteristic Sequences of a Meromorphic Curve; The Fundamental Theorem and applications; Irreducibility, Newton's Polygon; The Jacobian Problem.
Book cover: Linear Systems Theory and Introductory Algebraic GeometryLinear Systems Theory and Introductory Algebraic Geometry
by - Math Sci Press
Systems theory offers a unified mathematical framework to solve problems in a wide variety of fields. This mathematics is not of the traditional sort involved in engineering education, but involves virtually every field of modern mathematics.
Book cover: Lectures On Old And New Results On Algebraic CurvesLectures On Old And New Results On Algebraic Curves
by - Tata Institute Of Fundamental Research
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).