Logo

An Introduction to Quantum Computing using Cavity QED concepts

Small book cover: An Introduction to Quantum Computing using Cavity QED concepts

An Introduction to Quantum Computing using Cavity QED concepts
by

Publisher: arXiv
Number of pages: 53

Description:
We present a concise but complete conceptual treatment of quantum computing implemented with Cavity Quantum Electrodynamics (CQED). The paper is intended as a brief overview for professionals who are coming over to the field from other areas and who may have not discussed the concepts behind quantum computing during their technical training.

Home page url

Download or read it online for free here:
Download link
(260KB, PDF)

Similar books

Book cover: Introduction to Quantum Cellular AutomataIntroduction to Quantum Cellular Automata
by - arXiv
In this text the authors attempt to provide a useful introduction to quantum cellular automata from a computing perspective. For clarity and accessibility they provide a brief overview of both quantum computing and classical cellular automata.
(10104 views)
Book cover: Quantum ComputationQuantum Computation
by - University of Calgary
Topics: Quantum information; Superdense coding, quantum circuits, and partial measurements; Quantum Teleportation; Searching algorithms; Simon's algorithm; Phase estimation; Order finding; Grover's Algorithm; Quantum error correction; etc.
(9549 views)
Book cover: Quantum Computing Since DemocritusQuantum Computing Since Democritus
by - University of Waterloo
We'll start out with various scientific problems that predate quantum computing: for example, the measurement problem, P versus NP, the existence of secure cryptography, the Humean problem of induction, or the possibility of closed timelike curves.
(8342 views)
Book cover: Measures and Applications of Quantum CorrelationsMeasures and Applications of Quantum Correlations
by - arXiv
An overview of the current quest for a proper understanding of frontier between classical and quantum correlations in composite states. We focus on various approaches to define general quantum correlations, based on different physical perspectives.
(7660 views)