Tensor Techniques in Physics: a concise introduction
by Roy McWeeny
Publisher: Learning Development Institute 2011
Number of pages: 30
Description:
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).
Download or read it online for free here:
Download link
(250KB, PDF)
Similar books
Floer Homology, Gauge Theory, and Low Dimensional Topology
by David Ellwood, at al. - American Mathematical Society
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
(14024 views)
by David Ellwood, at al. - American Mathematical Society
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
(14024 views)
A Mathematics Primer for Physics Graduate Students
by Andrew E. Blechman
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(25433 views)
by Andrew E. Blechman
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(25433 views)
Lie Systems: Theory, Generalisations, and Applications
by J.F. Carinena, J. de Lucas - arXiv
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.
(10553 views)
by J.F. Carinena, J. de Lucas - arXiv
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.
(10553 views)
Feynman Diagrams and Differential Equations
by Mario Argeri, Pierpaolo Mastrolia - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(13550 views)
by Mario Argeri, Pierpaolo Mastrolia - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(13550 views)