Logo

An Introduction to Group Theory: Applications to Mathematical Music Theory

Small book cover: An Introduction to Group Theory: Applications to Mathematical Music Theory

An Introduction to Group Theory: Applications to Mathematical Music Theory
by

Publisher: BookBoon
ISBN-13: 9788740303247
Number of pages: 165

Description:
In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, among other disciplines, is introduced.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Thin Groups and Superstrong ApproximationThin Groups and Superstrong Approximation
by - Cambridge University Press
This book focuses on recent developments concerning various quantitative aspects of thin groups. It provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.
(7864 views)
Book cover: An Introduction to the Theory of Groups of Finite OrderAn Introduction to the Theory of Groups of Finite Order
by - Oxford Clarendon Press
This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra. I have tried to lighten for him the initial difficulties.
(7743 views)
Book cover: Finite Rank Torsion Free Modules Over Dedekind DomainsFinite Rank Torsion Free Modules Over Dedekind Domains
by - University of Hawaii
Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; etc.
(11171 views)
Book cover: Theory and Applications of Finite GroupsTheory and Applications of Finite Groups
by - J. Wiley
The book presents in a unified manner the more fundamental aspects of finite groups and their applications, and at the same time preserves the advantage which arises when each branch of an extensive subject is written by a specialist in that branch.
(9437 views)