Logo

Category Theory for Scientists

Small book cover: Category Theory for Scientists

Category Theory for Scientists
by

Publisher: arXiv
Number of pages: 261

Description:
There are many books designed to introduce category theory to either a mathematical audience or a computer science audience. In this book, our audience is the broader scientific community. We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.

Home page url

Download or read it online for free here:
Download link
(4.7MB, PDF)

Similar books

Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(10984 views)
Book cover: Category Theory for the SciencesCategory Theory for the Sciences
by - The MIT Press
This book shows that category theory can be useful outside of mathematics as a flexible modeling language throughout the sciences. Written in an engaging and straightforward style, the book is rigorous but accessible to non-mathematicians.
(7981 views)
Book cover: Seminar on Triples and Categorical Homology TheorySeminar on Triples and Categorical Homology Theory
by - Springer
This volume concentrates a) on the concept of 'triple' or standard construction with special reference to the associated 'algebras', and b) on homology theories in general categories, based upon triples and simplicial methods.
(12085 views)
Book cover: Basic Category TheoryBasic Category Theory
by - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(8841 views)