**Knot Invariants and Higher Representation Theory**

by Ben Webster

**Publisher**: arXiv 2013**Number of pages**: 87

**Description**:

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**A Primer on Mapping Class Groups**

by

**Benson Farb, Dan Margalit**-

**Princeton University Press**

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.

(

**11271**views)

**Ends of Complexes**

by

**Bruce Hughes, Andrew Ranicki**-

**Cambridge University Press**

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.

(

**9754**views)

**Surgery on Compact Manifolds**

by

**C.T.C. Wall, A. A. Ranicki**-

**American Mathematical Society**

This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.

(

**9890**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**18564**views)