**Computing of the Complex Variable Functions**

by Solomon I. Khmelnik, Inna S. Doubson

**Publisher**: MiC 2011**ISBN-13**: 9781257826605**Number of pages**: 46

**Description**:

Hardware algorithms for computing of all elementary complex variable functions are proposed. Contents: A method 'digit-by-digit'; Decomposition; Compositions; Two-step-by-step operations; Taking the logarithm; Potentiation; Operations with logarithmic forms; Extraction of a square root; Polar coordinates; Operations with polar forms.

Download or read it online for free here:

**Download link**

(4.9MB, PDF)

## Similar books

**Numerical Methods with Applications**

by

**Autar K Kaw, Egwu Eric Kalu**-

**Lulu.com**

The textbook is written for engineering undergraduates taking a course in numerical methods. It offers a treatise to numerical methods based on a holistic approach and short chapters. The authors included examples of real-life applications.

(

**20370**views)

**Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics**

by

**Justin Solomon**-

**CRC Press**

Using examples from a broad base of computational tasks, including data processing and computational photography, the book introduces numerical modeling and algorithmic design from a practical standpoint and provides insight into theoretical tools.

(

**9782**views)

**Mathematical Computation**

by

**Ian Craw**-

**University of Aberdeen**

The overall aim of the course is to present modern computer programming techniques in the context of mathematical computation and numerical analysis and to foster the independence needed to use these techniques as appropriate in subsequent work.

(

**14572**views)

**Geometric Transformation of Finite Element Methods: Theory and Applications**

by

**M. Holst, M. Licht**-

**arXiv.org**

We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.

(

**5386**views)