**An Introduction to Statistical Learning**

by G. James, D. Witten, T. Hastie, R. Tibshirani

**Publisher**: Springer 2013**ISBN/ASIN**: 1461471370**ISBN-13**: 9781461471370**Number of pages**: 440

**Description**:

This book provides an introduction to statistical learning methods. It is aimed for upper level undergraduate students, masters students and Ph.D. students in the non-mathematical sciences. The book also contains a number of R labs with detailed explanations on how to implement the various methods in real life settings, and should be a valuable resource for a practicing data scientist.

Download or read it online for free here:

**Download link**

(8.6MB, PDF)

## Similar books

**Elements of Causal Inference: Foundations and Learning Algorithms**

by

**J. Peters, D. Janzing, B. Schölkopf**-

**The MIT Press**

This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...

(

**6604**views)

**A Survey of Statistical Network Models**

by

**A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi**-

**arXiv**

We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.

(

**8955**views)

**Practical Artificial Intelligence Programming in Java**

by

**Mark Watson**-

**Lulu.com**

The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).

(

**25400**views)

**Reinforcement Learning and Optimal Control**

by

**Dimitri P. Bertsekas**-

**Athena Scientific**

The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.

(

**10119**views)