Lectures on the topological recursion for Higgs bundles and quantum curves
by Olivia Dumitrescu, Motohico Mulase
Publisher: arXiv 2015
Number of pages: 69
Description:
The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the new discovery of the relation between the following two disparate subjects: one is the topological recursion, that has its origin in random matrix theory and has been effectively applied to many enumerative geometry problems; and the other is the quantization of Hitchin spectral curves associated with Higgs bundles.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books
Mixed Motives
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15582 views)
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15582 views)
Stacks Project
by Johan de Jong, et al.
The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.
(11407 views)
by Johan de Jong, et al.
The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.
(11407 views)
Introduction to Stokes Structures
by Claude Sabbah - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(10404 views)
by Claude Sabbah - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(10404 views)
Abelian Varieties
by J. S. Milne
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(12954 views)
by J. S. Milne
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(12954 views)