Logo

Computational Linguistics by Igor Boshakov, Alexander Gelbukh

Small book cover: Computational Linguistics

Computational Linguistics
by


ISBN/ASIN: 9703601472
Number of pages: 198

Description:
The contents of the book are based on the course on computational linguistics that has been delivered by the authors since 1997 at the Center for Computing Research, National Polytechnic Institute, Mexico City. The book focuses on the basic set of ideas and facts from the fundamental science necessary for the creation of intelligent language processing tools, without going deeply into the details of specific algorithms or toy systems.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: How Mobile Robots Can Self-organise a VocabularyHow Mobile Robots Can Self-organise a Vocabulary
by - Language Science Press
This book presents a series of experiments in which two robots try to solve the symbol grounding problem. The experiments are based on the language game paradigm, and involve real mobile robots that are able to develop a grounded lexicon ...
(3105 views)
Book cover: Natural Language Processing for Prolog ProgrammersNatural Language Processing for Prolog Programmers
by - Prentice-Hall
Designed to bridge the gap for those who know Prolog but have no background in linguistics, this book concentrates on turning theories into practical techniques. Coverage includes template and keyword systems, definite clause grammars, and more.
(6693 views)
Book cover: Natural Language Processing for the Working ProgrammerNatural Language Processing for the Working Programmer
by
We will go into many of the techniques that so-called computational linguists use to analyze the structure of human language, and transform it into a form that computers work with. We chose Haskell as the main programming language for this book.
(12353 views)
Book cover: A Maximum Entropy Approach to Natural Language ProcessingA Maximum Entropy Approach to Natural Language Processing
by - Association for Computational Linguistics
The authors describe a method for statistical modeling based on maximum entropy. They present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently.
(6396 views)