Boosting: Foundations and Algorithms
by Robert E. Schapire, Yoav Freund
Publisher: The MIT Press 2014
ISBN-13: 9780262310413
Number of pages: 544
Description:
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry.
Download or read it online for free here:
Read online
(online html)
Similar books

by M. Mohri, A. Rostamizadeh, A. Talwalkar - The MIT Press
This is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools.
(5796 views)

by Osvaldo Simeone - arXiv.org
This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.
(6319 views)

by Stephen Muggleton, Luc de Raedt - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(34538 views)

by Kevin Patrick Murphy - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(3252 views)