**Algorithms for Reinforcement Learning**

by Csaba Szepesvari

**Publisher**: Morgan and Claypool Publishers 2009**ISBN/ASIN**: 1608454924**Number of pages**: 98

**Description**:

In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Introduction to Machine Learning for the Sciences**

by

**Titus Neupert, et al.**-

**arXiv.org**

This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.

(

**3087**views)

**Boosting: Foundations and Algorithms**

by

**Robert E. Schapire, Yoav Freund**-

**The MIT Press**

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.

(

**6570**views)

**Introduction to Machine Learning**

by

**Alex Smola, S.V.N. Vishwanathan**-

**Cambridge University Press**

Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.

(

**9767**views)

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**22279**views)