Logo

Algorithms for Reinforcement Learning

Large book cover: Algorithms for Reinforcement Learning

Algorithms for Reinforcement Learning
by

Publisher: Morgan and Claypool Publishers
ISBN/ASIN: 1608454924
Number of pages: 98

Description:
In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Introduction to Machine Learning for the SciencesIntroduction to Machine Learning for the Sciences
by - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3087 views)
Book cover: Boosting: Foundations and AlgorithmsBoosting: Foundations and Algorithms
by - The MIT Press
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.
(6570 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - Cambridge University Press
Over the past two decades Machine Learning has become one of the mainstays of information technology and a rather central part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.
(9767 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(22279 views)