**Introduction to Differential Geometry and General Relativity**

by Stefan Waner

2005**Number of pages**: 138

**Description**:

From the table of contents: distance, open sets, parametric surfaces and smooth functions, smooth manifolds and scalar fields, tangent vectors and the tangent space, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, geodesics and local inertial frames, the Riemann curvature tensor, comoving frames and proper time, the stress tensor and the relativistic stress-energy tensor, three basic premises of general relativity, the Einstein field equations and derivation of Newton's law, the Schwarzschild metric and event horizons, White Dwarfs, neutron stars and black holes.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**General Relativity Notes**

by

**Edmund Bertschinger**-

**MIT**

Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.

(

**7278**views)

**The Mathematical Theory of Relativity**

by

**Arthur Stanley Eddington**-

**Cambridge University Press**

Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.

(

**1256**views)

**Recent Developments in Gravitational Collapse and Spacetime Singularities**

by

**Pankaj S. Joshi, Daniele Malafarina**-

**arXiv**

The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. In this text, the authors discuss several of these developments here.

(

**6637**views)

**General Covariance and the Foundations of General Relativity**

by

**John D Norton**-

**University of Pittsburgh**

This text reviews the development of Einstein's thought on general covariance (the fundamental physical principle of GTR), its relation to the foundations of general relativity and the evolution of the continuing debate over his viewpoint.

(

**6269**views)