**Introduction to Differential Geometry and General Relativity**

by Stefan Waner

2005**Number of pages**: 138

**Description**:

From the table of contents: distance, open sets, parametric surfaces and smooth functions, smooth manifolds and scalar fields, tangent vectors and the tangent space, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, geodesics and local inertial frames, the Riemann curvature tensor, comoving frames and proper time, the stress tensor and the relativistic stress-energy tensor, three basic premises of general relativity, the Einstein field equations and derivation of Newton's law, the Schwarzschild metric and event horizons, White Dwarfs, neutron stars and black holes.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Lecture Notes on General Relativity**

by

**Matthias Blau**-

**Universitaet Bern**

The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.

(

**9587**views)

**Vector Analysis and the Theory of Relativity**

by

**Francis Dominic Murnaghan**-

**Johns Hopkins press**

This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.

(

**11698**views)

**Partial Differential Equations of Physics**

by

**Robert Geroch**-

**arXiv**

All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.

(

**12754**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**9965**views)