Logo

Introduction to Probability

Large book cover: Introduction to Probability

Introduction to Probability
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821807498
ISBN-13: 9780821807491
Number of pages: 520

Description:
This is a textbook designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject.

Home page url

Download or read it online for free here:
Download link
(3MB, PDF)

Similar books

Book cover: Probability: Theory and ExamplesProbability: Theory and Examples
by - Cambridge University Press
An introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It concentrates on the results that are the most useful for applications.
(9837 views)
Book cover: Probability, Geometry and Integrable SystemsProbability, Geometry and Integrable Systems
by - Cambridge University Press
The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.
(11640 views)
Book cover: ProbabilityProbability
by - Trinity College
This material was made available for the course Probability of the Mathematical Tripos. Contents: Basic Concepts; Axiomatic Probability; Discrete Random Variables; Continuous Random Variables; Inequalities, Limit Theorems and Geometric Probability.
(2920 views)
Book cover: Random Graphs and Complex NetworksRandom Graphs and Complex Networks
by - Eindhoven University of Technology
These lecture notes are intended to be used for master courses, where the students have a limited prior knowledge of special topics in probability. We have included many of the preliminaries, such as convergence of random variables, etc.
(7061 views)