**Partial Differential Equations of Physics**

by Robert Geroch

**Publisher**: arXiv 1996**Number of pages**: 57

**Description**:

All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated. Examples of such features include hyperbolicity of the equations, constraints and their roles, how diffeomorphism freedom is manifest, and how interactions between systems arise and operate.

Download or read it online for free here:

**Download link**

(500KB, PDF)

## Similar books

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**11361**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**5640**views)

**The Mathematical Theory of Relativity**

by

**Arthur Stanley Eddington**-

**Cambridge University Press**

Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.

(

**1873**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**4596**views)