**Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity**

by Joseph C. Kolecki

**Publisher**: Glenn Research Center 2005**Number of pages**: 92

**Description**:

Tensor analysis is useful because of its great generality, computational power, and compact, easy-to-use notation. This monograph is intended to provide a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies in applied mathematics.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**4743**views)

**Gravitational Waves, Sources, and Detectors**

by

**Bernard F Schutz, Franco Ricci**-

**arXiv**

Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.

(

**6339**views)

**Mass and Angular Momentum in General Relativity**

by

**J.L. Jaramillo, E. Gourgoulhon**-

**arXiv**

We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.

(

**5777**views)

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**11519**views)