Logo

Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

Small book cover: Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity
by

Publisher: Glenn Research Center
Number of pages: 92

Description:
Tensor analysis is useful because of its great generality, computational power, and compact, easy-to-use notation. This monograph is intended to provide a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies in applied mathematics.

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: The Mathematical Theory of RelativityThe Mathematical Theory of Relativity
by - Cambridge University Press
Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.
(5771 views)
Book cover: General RelativityGeneral Relativity
by - lightandmatter.com
This is an undergraduate textbook on general relativity. It is well adapted for self-study, and answers are given in the back of the book for almost all the problems. The ratio of conceptual to mathematical problems is higher than in most books.
(12600 views)
Book cover: General Relativity NotesGeneral Relativity Notes
by - MIT
Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.
(11741 views)
Book cover: Partial Differential Equations of PhysicsPartial Differential Equations of Physics
by - arXiv
All partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. We describe some broad features of systems of differential equations so formulated.
(16092 views)