Logo

Random Matrix Models and Their Applications

Large book cover: Random Matrix Models and Their Applications

Random Matrix Models and Their Applications
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521802091
ISBN-13: 9780521802093
Number of pages: 438

Description:
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its focus on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Design of Comparative ExperimentsDesign of Comparative Experiments
by - Cambridge University Press
This book develops a coherent framework for thinking about factors that affect experiments and their relationships, including the use of Hasse diagrams. The book is ideal for advanced undergraduate and beginning graduate courses.
(25074 views)
Book cover: Introduction to Randomness and StatisticsIntroduction to Randomness and Statistics
by - arXiv
This is a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables.
(15895 views)
Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(15671 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(17460 views)