**Convergence of Stochastic Processes**

by D. Pollard

**Publisher**: Springer 1984**ISBN/ASIN**: 1461297583**ISBN-13**: 9781461297581**Number of pages**: 223

**Description**:

An exposition od selected parts of empirical process theory, with related interesting facts about weak convergence, and applications to mathematical statistics. The high points of the book describe the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.

Download or read it online for free here:

**Download link**

(8.6MB, PDF)

## Similar books

**Probability, Statistics and Stochastic Processes**

by

**Cosma Rohilla Shalizi**

Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).

(

**10739**views)

**Stochastic Integration and Stochastic Differential Equations**

by

**Klaus Bichteler**-

**University of Texas**

Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.

(

**13257**views)

**Markov Chains and Stochastic Stability**

by

**S.P. Meyn, R.L. Tweedie**-

**Springer**

The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.

(

**20389**views)

**An Introduction to Stochastic PDEs**

by

**Martin Hairer**-

**arXiv**

This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.

(

**12718**views)