Logo

Reversible Markov Chains and Random Walks on Graphs

Reversible Markov Chains and Random Walks on Graphs
by

Publisher: University of California, Berkeley
Number of pages: 516

Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: An Introduction to Stochastic PDEsAn Introduction to Stochastic PDEs
by - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(13642 views)
Book cover: Topics in Random Matrix TheoryTopics in Random Matrix Theory
by
This is a textbook for a graduate course on random matrix theory, inspired by recent developments in the subject. This text focuses on foundational topics in random matrix theory upon which the most recent work has been based.
(13965 views)
Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(14104 views)
Book cover: Bayesian Spectrum Analysis and Parameter EstimationBayesian Spectrum Analysis and Parameter Estimation
by - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(17698 views)