Logo

Applied Nonparametric Regression

Large book cover: Applied Nonparametric Regression

Applied Nonparametric Regression
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521429501
ISBN-13: 9780521429504
Number of pages: 433

Description:
This book represents an optimally estimated common thread for the numerous topics and results in the fast-growing area of nonparametric regression. The user-friendly approach taken by the author has successfully smoothed out most of the formidable asymptotic elaboration in developing the theory. This is an excellent collection for both beginners and experts.

Download or read it online for free here:
Download link
(4.4MB, PDF)

Similar books

Book cover: Probability and Mathematical StatisticsProbability and Mathematical Statistics
by - University of Louisville
This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.
(9047 views)
Book cover: Introduction Probaility and StatisticsIntroduction Probaility and Statistics
by - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(25624 views)
Book cover: Probability and Statistics CookbookProbability and Statistics Cookbook
by
The cookbook contains a succinct representation of various topics in probability theory and statistics. It provides a comprehensive reference reduced to the mathematical essence, rather than aiming for elaborate explanations.
(17628 views)
Book cover: Bayesian Spectrum Analysis and Parameter EstimationBayesian Spectrum Analysis and Parameter Estimation
by - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(15769 views)