**Applied Nonparametric Regression**

by Wolfgang HĂ¤rdle

**Publisher**: Cambridge University Press 1992**ISBN/ASIN**: 0521429501**ISBN-13**: 9780521429504**Number of pages**: 433

**Description**:

This book represents an optimally estimated common thread for the numerous topics and results in the fast-growing area of nonparametric regression. The user-friendly approach taken by the author has successfully smoothed out most of the formidable asymptotic elaboration in developing the theory. This is an excellent collection for both beginners and experts.

Download or read it online for free here:

**Download link**

(4.4MB, PDF)

## Similar books

**CK-12 Basic Probability and Statistics: A Short Course**

by

**Brenda Meery**-

**CK-12.org**

CK-12 Foundation's Basic Probability and Statisticsâ€“ A Short Course is an introduction to theoretical probability and data organization. Students learn about events, conditions, random variables, and graphs and tables that allow them to manage data.

(

**20188**views)

**Bayesian Spectrum Analysis and Parameter Estimation**

by

**G. Larry Bretthorst**-

**Springer**

This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.

(

**17051**views)

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**6117**views)

**Markov Chains and Stochastic Stability**

by

**S.P. Meyn, R.L. Tweedie**-

**Springer**

The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.

(

**21012**views)