Modular Functions and Modular Forms
by J. S. Milne
2009
Number of pages: 129
Description:
This is an introduction to the arithmetic theory of modular functions and modular forms, with a greater emphasis on the geometry than most accounts. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.
Download or read it online for free here:
Download link
(960KB, PDF)
Similar books
Noncommutative Algebraic Geometry
by Gwyn Bellamy, et al. - Cambridge University Press
This book provides an introduction to some of the most significant topics in this area, including noncommutative projective algebraic geometry, deformation theory, symplectic reflection algebras, and noncommutative resolutions of singularities.
(6315 views)
by Gwyn Bellamy, et al. - Cambridge University Press
This book provides an introduction to some of the most significant topics in this area, including noncommutative projective algebraic geometry, deformation theory, symplectic reflection algebras, and noncommutative resolutions of singularities.
(6315 views)
Introduction to Projective Varieties
by Enrique Arrondo - Universidad Complutense de Madrid
The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.
(10733 views)
by Enrique Arrondo - Universidad Complutense de Madrid
The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.
(10733 views)
Algebraic Geometry
by J.S. Milne
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(16146 views)
by J.S. Milne
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(16146 views)
Lectures on Birational Geometry
by Caucher Birkar - arXiv
Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, etc.
(8946 views)
by Caucher Birkar - arXiv
Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, etc.
(8946 views)