Logo

An Introduction to Many Worlds in Quantum Computation

Small book cover: An Introduction to Many Worlds in Quantum Computation

An Introduction to Many Worlds in Quantum Computation
by

Publisher: arXiv
Number of pages: 38

Description:
The interpretation of quantum mechanics is an area of increasing interest to many working physicists. This paper introduces one interpretation of quantum mechanics, a modern 'many-worlds' theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific 'neo-Everettian' theory is introduced and its claim as the best available interpretation defended.

Home page url

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: Introduction to Quantum Mechanics with Applications to ChemistryIntroduction to Quantum Mechanics with Applications to Chemistry
by - McGraw-Hill Education
This undergraduate-level text applies quantum mechanics to some chemical and physical problems, covering wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules.
(18143 views)
Book cover: Quantum NonlocalityQuantum Nonlocality
by - MDPI AG
This book presents the current views on the bizarre property of quantum theory: nonlocality. The contributions in the book describe the bizarre aspects of nonlocality -- a phenomenon which cannot be explained in the framework of classical physics.
(3200 views)
Book cover: Introduction to Computational Quantum MechanicsIntroduction to Computational Quantum Mechanics
by - arXiv
This document is aimed at advanced students of physics who are familiar with the concepts and notations of quantum mechanics. It tries to bridge the gap between simple analytic calculations and complicated large-scale computations.
(4658 views)
Book cover: The Physics of Quantum MechanicsThe Physics of Quantum Mechanics
by - Capella Archive
This book aims to give students the best possible understanding of the physical implications of quantum mechanics by explaining how quantum systems evolve in time, and showing the close parallels between quantum and classical dynamics.
(13072 views)