Elementary Differential Geometry
by Gilbert Weinstein
Publisher: UAB 2009
Number of pages: 62
Description:
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate as much as possible a concrete picture.
Download or read it online for free here:
Download link
(550KB, PDF)
Similar books
Differential Geometry
by Balazs Csikos - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(12916 views)
by Balazs Csikos - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(12916 views)
Topics in Differential Geometry
by Peter W. Michor - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(12265 views)
by Peter W. Michor - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(12265 views)
Differential Geometry: Lecture Notes
by Dmitri Zaitsev - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(11876 views)
by Dmitri Zaitsev - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(11876 views)
Differentiable Manifolds
by Nigel Hitchin
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(19628 views)
by Nigel Hitchin
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(19628 views)