**Essays on the Theory of Numbers**

by Richard Dedekind

**Publisher**: The Open Court Publishing 1901**ISBN/ASIN**: 0486210103**Number of pages**: 78

**Description**:

This is a book combining two essays by Dedekind: "Continuity and irrational numbers" - Dedekind's way of defining the real numbers from rational numbers; and "The nature and meaning of numbers" where Dedekind offers a precise explication of the natural numbers (using what are now called the Peano axioms, since Peano made so much of them after reading Dedekind).

Download or read it online for free here:

**Download link**

(460KB, PDF)

## Similar books

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**14564**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**10322**views)

**Pluckings from the tree of Smarandache: Sequences and functions**

by

**Charles Ashbacher**-

**American Research Press**

The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.

(

**14838**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**7345**views)