**Why are Braids Orderable?**

by Patrick Dehornoy, at al.

2010**Number of pages**: 206

**Description**:

In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**10573**views)

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**12056**views)

**Groups as Graphs**

by

**W. B. V. Kandasamy, F. Smarandache**-

**CuArt**

In this book, for the first time, the authors represented every finite group in the form of a graph. This study is significant because properties of groups can be immediately obtained by looking at the graphs of the groups.

(

**12614**views)

**An Introduction to the Theory of Groups of Finite Order**

by

**Harold Hilton**-

**Oxford Clarendon Press**

This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra. I have tried to lighten for him the initial difficulties.

(

**6380**views)