**Congruence Lattices of Finite Algebras**

by William DeMeo

**Publisher**: arXiv 2012**Number of pages**: 130

**Description**:

In this work, we review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist without actually constructing them. By combining these well known methods with a new method we have developed, we prove that with one possible exception every lattice with at most seven elements is isomorphic to the congruence lattice of a finite algebra.

Download or read it online for free here:

**Download link**

(980KB, PDF)

## Similar books

**Groups Around Us**

by

**Pavel Etingof**-

**Massachusetts Institute of Technology**

These are notes of a mini-course of group theory for high school students. This course covers the most basic parts of group theory with many applications. The notes contain many exercises, which are necessary for understanding the main text.

(

**4863**views)

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**12383**views)

**Group Theory**

by

**J. S. Milne**

Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.

(

**14287**views)

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**10919**views)