Logo

Lecture Notes on Differentiable Manifolds

Small book cover: Lecture Notes on Differentiable Manifolds

Lecture Notes on Differentiable Manifolds
by

Publisher: National University of Singapore
Number of pages: 78

Description:
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; Tangent Bundles and Vector Fields; Riemann Metric and Cotangent Bundles; Tensor Bundles, Tensor Fields and Differential Forms; Orientation and Integration; The Exterior Derivative and the Stokes Theorem.

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(13038 views)
Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(13578 views)
Book cover: Differential TopologyDifferential Topology
by - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11205 views)
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(12324 views)