Introduction to Differential Topology, de Rham Theory and Morse Theory
by Michael Muger
Publisher: Radboud University 2005
Number of pages: 80
Description:
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; Perspectives.
Download or read it online for free here:
Download link
(550KB, PDF)
Similar books
Symplectic Geometry
by Ana Cannas da Silva - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(13282 views)
by Ana Cannas da Silva - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(13282 views)
Differential Topology
by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11491 views)
by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11491 views)
Differential Topology of Fiber Bundles
by Karl-Hermann Neeb - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
(10532 views)
by Karl-Hermann Neeb - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
(10532 views)
Ricci Flow and the Poincare Conjecture
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(13894 views)
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(13894 views)