Logo

Introduction to Differential Topology, de Rham Theory and Morse Theory

Small book cover: Introduction to Differential Topology, de Rham Theory and Morse Theory

Introduction to Differential Topology, de Rham Theory and Morse Theory
by

Publisher: Radboud University
Number of pages: 80

Description:
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; Perspectives.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Lecture Notes on Differentiable ManifoldsLecture Notes on Differentiable Manifolds
by - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(13322 views)
Book cover: Contact TopologyContact Topology
by - University of Texas at Austin
This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.
(5404 views)
Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(14547 views)
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(11475 views)