Logo

Langlands Correspondence for Loop Groups

Large book cover: Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521854431
ISBN-13: 9780521854436
Number of pages: 393

Description:
This book provides an excellent detailed review of an important aspect of the geometric Langlands program, namely, the role of representation theory of affine Kac-Moody algebras (or loop algebras). It provides clear and insightful introductions to such notions as vertex algebras, the Langlands dual group, connections on the punctured disc, representation theory of loop algebras, etc.

Home page url

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: An Introduction to the Smarandache FunctionAn Introduction to the Smarandache Function
by - Erhus Univ Pr
In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.
(9216 views)
Book cover: Lectures on Shimura VarietiesLectures on Shimura Varieties
by
The goal of these lectures is to explain the representability of moduli space abelian varieties with polarization, endomorphism and level structure, due to Mumford and the description of the set of its points over a finite field, due to Kottwitz.
(6256 views)
Book cover: Collections of Problems on Smarandache NotionsCollections of Problems on Smarandache Notions
by - Erhus University Press
This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.
(13761 views)
Book cover: The Smarandache FunctionThe Smarandache Function
by - Erhus University Press
The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.
(8421 views)