An Introduction to K-theory and Cyclic Cohomology
by Jacek Brodzki
Publisher: arXiv 1996
Number of pages: 115
Description:
These lecture notes contain an exposition of basic ideas of K-theory and cyclic cohomology. I begin with a list of examples of various situations in which the K-functor of Grothendieck appears naturally, including the rudiments of the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.
Download or read it online for free here:
Download link
(790KB, PDF)
Similar books

by Hyman Bass - Tata Institute of Fundamental Research
Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.
(9588 views)

by Olivier Isely - EPFL
Algebraic K-theory is a branch of algebra dealing with linear algebra over a general ring A instead of over a field. Algebraic K-theory plays an important role in many subjects, especially number theory, algebraic topology and algebraic geometry.
(7884 views)

by Eric M. Friedlander
The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible with little or no prior knowledge of the subject.
(12101 views)

by Hyman Bass - W. A. Benjamin
The algebraic K-theory presented here is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization off the theorem asserting the existence and uniqueness of bases for vector spaces ...
(7996 views)