Logo

Lecture Notes on Quantum Brownian Motion

Small book cover: Lecture Notes on Quantum Brownian Motion

Lecture Notes on Quantum Brownian Motion
by

Publisher: arXiv
Number of pages: 92

Description:
Einstein's kinetic theory of the Brownian motion, based upon light water molecules continuously bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge to verify the emergence of diffusion from the Schroedinger equation.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Quantum Spin Systems on Infinite LatticesQuantum Spin Systems on Infinite Lattices
by - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.
(4406 views)
Book cover: Elements for Physics: Quantities, Qualities, and Intrinsic TheoriesElements for Physics: Quantities, Qualities, and Intrinsic Theories
by - Springer
Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.
(12544 views)
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.
(11523 views)
Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(12066 views)