An Introduction to Topos Physics

An Introduction to Topos Physics

Publisher: arXiv
Number of pages: 104

The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can further the study of quantum logic and give rise to new and 'neo-realistic' descriptions of quantum physics, i.e. make possible the construction of a general scheme for quantum physics, which 'looks like' the classical one.

Home page url

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
Book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index TheoremInvariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by - Publish or Perish Inc.
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).