**Lectures on Topics in Algebraic Number Theory**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2002**Number of pages**: 83

**Description**:

These lectures are aimed at giving a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Introduction to Algebraic Number Theory**

by

**William Stein**-

**University of Washington**

Topics in this book: Rings of integers of number fields; Unique factorization of ideals in Dedekind domains; Structure of the group of units of the ring of integers; Finiteness of the group of equivalence classes of ideals of the ring of integers...

(

**12769**views)

**Lectures on Siegel Modular Forms and Representation by Quadratic Forms**

by

**Y. Kitaoka**-

**Tata Institute of Fundamental Research**

This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.

(

**7928**views)

**Notes on the Theory of Algebraic Numbers**

by

**Steve Wright**-

**arXiv**

This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.

(

**7294**views)

**An Introduction to Algebraic Number Theory**

by

**F. Oggier**-

**Nanyang Technological University**

Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.

(

**10863**views)