Logo

Ends of Complexes by Bruce Hughes, Andrew Ranicki

Large book cover: Ends of Complexes

Ends of Complexes
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521055199
ISBN-13: 9780521055192
Number of pages: 375

Description:
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(6749 views)
Book cover: Four-manifolds, Geometries and KnotsFour-manifolds, Geometries and Knots
by - arXiv
The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.
(9066 views)
Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(13186 views)
Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(4961 views)