**Ends of Complexes**

by Bruce Hughes, Andrew Ranicki

**Publisher**: Cambridge University Press 2008**ISBN/ASIN**: 0521055199**ISBN-13**: 9780521055192**Number of pages**: 375

**Description**:

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Geometric Topology: Localization, Periodicity and Galois Symmetry**

by

**Dennis Sullivan**-

**Springer**

In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.

(

**6749**views)

**Four-manifolds, Geometries and Knots**

by

**Jonathan Hillman**-

**arXiv**

The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.

(

**9066**views)

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**13186**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**4961**views)