Categories and Homological Algebra
by Pierre Schapira
Publisher: UPMC 2011
Number of pages: 125
Description:
The aim of these notes is to introduce the reader to the language of categories and to present the basic notions of homological algebra, first from an elementary point of view, with the notion of derived functors, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
Download or read it online for free here:
Download link
(630KB, PDF)
Similar books
Category Theory in Context
by Emily Riehl - Dover Publications
This is a concise, original text for a one-semester introduction to the subject. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, monads, etc.
(7234 views)
by Emily Riehl - Dover Publications
This is a concise, original text for a one-semester introduction to the subject. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, monads, etc.
(7234 views)
Higher Operads, Higher Categories
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13382 views)
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13382 views)
Basic Category Theory
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13534 views)
by Jaap van Oosten - University of Utrecht
Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.
(13534 views)
Basic Category Theory
by Tom Leinster - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(9262 views)
by Tom Leinster - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(9262 views)