**An Introduction to the Algebra of Quantics**

by E.B. Elliott

**Publisher**: The Clarendon Press 1913**ISBN/ASIN**: B005GE94HU**Number of pages**: 444

**Description**:

The primary object of this book is that of explaining with all the clearness at my command the leading principles of invariant algebra, in the hope of making it evident to the junior student that the subject is attractive as well as important, and that its early difficulties are only such as he can readily surmount.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**An Introduction to Nonassociative Algebras**

by

**Richard D. Schafer**-

**Project Gutenberg**

Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students.

(

**15220**views)

**Smarandache Semirings, Semifields and Semivector Spaces**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.

(

**13563**views)

**Set Theoretic Approach to Algebraic Structures in Mathematics**

by

**W. B. Vasantha Kandasamy, Florentin Smarandache**-

**Educational Publisher**

This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.

(

**12187**views)

**Smarandache Near-rings**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.

(

**14057**views)