Geometry of Numbers with Applications to Number Theory
by Pete L. Clark
Publisher: University of Georgia 2015
Number of pages: 159
Description:
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Wolfgang M. Schmidt - Tata Institute of Fundamental Research
The theory of Irregularities of Distribution began as a branch of Uniform Distributions, but is of independent interest. In these lectures the author restricted himself to distribution problems with a geometric interpretation.
(8121 views)

by Richard Dedekind - The Open Court Publishing
This is a book combining two essays: 'Continuity and irrational numbers' - Dedekind's way of defining the real numbers from rational numbers; and 'The nature and meaning of numbers' where Dedekind offers a precise explication of the natural numbers.
(12750 views)

by J. Arthur, D. Ellwood, R. Kottwitz - American Mathematical Society
The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.
(11434 views)

by Charles Ashbacher - Erhus University Press
This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.
(16208 views)