**Geometry of Numbers with Applications to Number Theory**

by Pete L. Clark

**Publisher**: University of Georgia 2015**Number of pages**: 159

**Description**:

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Harmonic Analysis, the Trace Formula, and Shimura Varieties**

by

**J. Arthur, D. Ellwood, R. Kottwitz**-

**American Mathematical Society**

The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.

(

**13141**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**13164**views)

**Topics in the Theory of Quadratic Residues**

by

**Steve Wright**-

**arXiv**

Beginning with Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study ...

(

**8850**views)

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**18411**views)