Geometry of Numbers with Applications to Number Theory
by Pete L. Clark
Publisher: University of Georgia 2015
Number of pages: 159
Description:
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Edward Frenkel - Cambridge University Press
This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.
(11191 views)

by Douglas Ulmer - arXiv
The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.
(12734 views)

by Charles Ashbacher - Erhus Univ Pr
In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.
(13787 views)

by J. E. Cremona - Cambridge University Press
The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.
(19041 views)