Logo

Phase Transitions and Collective Phenomena

Small book cover: Phase Transitions and Collective Phenomena

Phase Transitions and Collective Phenomena
by

Publisher: University of Cambridge
Number of pages: 119

Description:
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Non-Equilibrium Statistical MechanicsNon-Equilibrium Statistical Mechanics
by - Imperial College London
This is an attempt to deliver, within a couple of hours, a few key-concepts of non-equilibrium statistical mechanics. The goal is to develop some ideas of contemporary research. Many of the ideas are illustrated or even introduced by examples.
(8173 views)
Book cover: Introduction to the theory of stochastic processes and Brownian motion problemsIntroduction to the theory of stochastic processes and Brownian motion problems
by - arXiv
Contents: Stochastic variables; Stochastic processes and Markov processes; The master equation; The Langevin equation; Linear response theory, dynamical susceptibilities, and relaxation times; Langevin and Fokker–Planck equations; etc.
(9392 views)
Book cover: Theoretical Physics IV: Statistical PhysicsTheoretical Physics IV: Statistical Physics
by - Clausthal University of Technology
From the table of contents: Entropy and Information; The ideal Boltzmann gas; Equilibrium; Thermodynamic Processes; The Language of Thermodynamics; The Language of Statistical Physics; Non-interacting Model Systems; Non-interacting particles.
(8092 views)
Book cover: Time-related Issues in Statistical MechanicsTime-related Issues in Statistical Mechanics
by - Clarkson University
Topics covered: The description of apparent of irreversibility; Physical origins of the arrow(s) of time; Two-time boundary value problems; The micro / macro distinction and coarse graining; Quantum mechanics with special states.
(11392 views)