Statistical Learning and Sequential Prediction
by Alexander Rakhlin, Karthik Sridharan
Publisher: University of Pennsylvania 2014
Number of pages: 261
Description:
This course will focus on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. Beyond the theoretical analysis, we will discuss learning algorithms and, in particular, an important connection between learning and optimization.
Download or read it online for free here:
Download link
(2.5MB, PDF)
Similar books

by Mark Watson - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(26157 views)

by Jan-Willem van de Meent, et al. - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5602 views)

by Nils J Nilsson
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(31237 views)

by Shai Shalev-Shwartz, Shai Ben-David - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(11403 views)