Logo

Statistical Learning and Sequential Prediction

Small book cover: Statistical Learning and Sequential Prediction

Statistical Learning and Sequential Prediction
by

Publisher: University of Pennsylvania
Number of pages: 261

Description:
This course will focus on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. Beyond the theoretical analysis, we will discuss learning algorithms and, in particular, an important connection between learning and optimization.

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Practical Artificial Intelligence Programming in JavaPractical Artificial Intelligence Programming in Java
by - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(26157 views)
Book cover: An Introduction to Probabilistic ProgrammingAn Introduction to Probabilistic Programming
by - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5602 views)
Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(31237 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(11403 views)