Logo

Introduction to Machine Learning for the Sciences

Small book cover: Introduction to Machine Learning for the Sciences

Introduction to Machine Learning for the Sciences
by

Publisher: arXiv.org
Number of pages: 80

Description:
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich and the Quantum Matter and AI group at the Delft University of Technology. We discuss supervised, unsupervised, and reinforcement learning.

Home page url

Download or read it online for free here:
Download link
(4.1MB, PDF)

Similar books

Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(10376 views)
Book cover: Inductive Logic Programming: Theory and MethodsInductive Logic Programming: Theory and Methods
by - ScienceDirect
Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.
(35628 views)
Book cover: Modeling Agents with Probabilistic ProgramsModeling Agents with Probabilistic Programs
by - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(5838 views)
Book cover: Reinforcement Learning and Optimal ControlReinforcement Learning and Optimal Control
by - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(9603 views)